Showing 81 - 100 results of 20,322 for search '(((( 10 nm decrease ) OR ( 50 ((we decrease) OR (a decrease)) ))) OR ( 5 step decrease ))', query time: 0.80s Refine Results
  1. 81

    Data_Sheet_2_Decreased default mode network functional connectivity with visual processing regions as potential biomarkers for delayed neurocognitive recovery: A resting-state fMRI... by Zhaoshun Jiang (7478243)

    Published 2023
    “…The machine learning experiment procedure mainly included three following steps: feature standardization, parameter adjustment, and performance comparison. …”
  2. 82

    Modeling the Shape and Stability of Co Nanoparticles as a Function of Size and Support Interactions through DFT Calculations and Monte Carlo Simulations by Enrico Sireci (12127349)

    Published 2025
    “…In this work, we have employed a combined density functional theory (DFT)-Monte Carlo (MC) approach to produce structural models of Co nanoparticles (NPs), widely employed in the Fischer–Tropsch (FT) synthesis for the production of sustainable aviation fuels (SAFs), in the 2–10 nm size range including the effects of temperature and metal–support interactions (MSI). …”
  3. 83

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
  4. 84

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
  5. 85

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbO<sub><i>x</i></sub> (0 ≤ <i>x</i> ≤ 2) nanoparticles between 10 and 50 nm. …”
  6. 86
  7. 87

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  8. 88

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  9. 89

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  10. 90

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  11. 91

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  12. 92

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  13. 93

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  14. 94

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  15. 95

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  16. 96

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  17. 97

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  18. 98

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  19. 99

    Spatial representation of mean annual soil loss increase/decrease derived with the different modeling centers (rows) and time steps (columns) with the SSP5-8.5. by Fabián Santos (8174028)

    Published 2023
    “…<p>Spatial representation of mean annual soil loss increase/decrease derived with the different modeling centers (rows) and time steps (columns) with the SSP5-8.5.…”
  20. 100