Showing 1 - 20 results of 84,895 for search '(((( 10 nm decrease ) OR ( 50 _ decrease ))) OR ( _ ((wt decrease) OR (we decrease)) ))', query time: 1.34s Refine Results
  1. 1

    Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s. by Djaloul Karboua (16510091)

    Published 2023
    “…<p>Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s.…”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Increased osteoblastic activity and decreased osteoclastogenesis in TgLRAP cells <i>in vitro</i>. by Naoto Haruyama (487384)

    Published 2021
    “…Compared with the co-culture of WT BMCs and WT calvarial cells (WT / WT), the number of osteoclasts were significantly decreased at 50% in the co-cultures of TgLRAP BMCs and TgLRAP calvarial cells (TgLRAP / TgLRAP) (graph). …”
  9. 9

    CCR2 depletion decreases lipid accumulation in the liver and WAT. by Seung Joo Lee (1766020)

    Published 2019
    “…Increased lipid droplets and fat size in HFD WT were decreased in HFD KO. Arrow indicates a crown-like structure. …”
  10. 10
  11. 11
  12. 12
  13. 13

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  14. 14

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  15. 15

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  16. 16

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  17. 17

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  18. 18
  19. 19
  20. 20

    <i>Kdm6a</i> conditional KO mice have decreased repopulating potential in serial competitive transplantation assays. by Ling Tian (107492)

    Published 2021
    “…Whole BM cells were harvested from all cohorts of young <i>Kdm6a</i> conditional KO mice (CD45.2) and mixed with WT competitor marrow (CD45.1 x CD45.2) in a 1:1 ratio, which was then transplanted into lethally-irradiated primary recipient mice (CD45.1). …”