Search alternatives:
ng decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nm decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
100 ng » 100 mg (Expand Search), 100 nm (Expand Search), 100 ns (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
ng decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nm decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
100 ng » 100 mg (Expand Search), 100 nm (Expand Search), 100 ns (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Bioinformatics analysis of the gene pathways that were enriched in the N.g MDP–treated osteocytes and verification <i>in vitro</i>.
Published 2022“…Green arrow, BMSCs; blue arrow, osteoblast; red arrow, osteocyte; Control, the sample was treated with culture medium in vitro or saline only in vivo; MDP, the sample was treated with 1 μg/ml N.g MDP for 36 h in vitro or 2 μg N.g MDP dissolved in 100 μl of saline solution for 10 days in vivo.…”
-
14
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
15
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
16
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
17
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
18
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
19
-
20