يعرض 1 - 20 نتائج من 8,791 نتيجة بحث عن '(((( 17 ((we decrease) OR (teer decrease)) ) OR ( _ largest decrease ))) OR ( _ values decrease ))', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    TITAN thresholds and percentile estimates for benthic macroinvertebrate and diatom communities deemed to be sensitive decreasers or tolerant increasers. The thresholds represent the largest fsum <i>z</i> value in the main data analysis run (i.e., the median), whereas the 5<sup>th</sup> and 95<sup>th</sup> percentile change points are determined from 500 bootstrap replicate runs.... حسب Brent J. Bellinger (21156150)

    منشور في 2025
    "…<p>TITAN thresholds and percentile estimates for benthic macroinvertebrate and diatom communities deemed to be sensitive decreasers or tolerant increasers. The thresholds represent the largest fsum <i>z</i> value in the main data analysis run (i.e., the median), whereas the 5<sup>th</sup> and 95<sup>th</sup> percentile change points are determined from 500 bootstrap replicate runs. …"
  10. 10

    Table 1_Multi-generational adaptation to Solanum nigrum increases reproduction and decreases microbial diversity of Aphis gossypii.docx حسب Peng Wang (34436)

    منشور في 2025
    "…The fifth generation of A. gossypii (T5) exhibited the strongest adaptability to S. nigrum, demonstrating notably higher values of r (intrinsic rate of increase), λ (finite rate of increase), and fecundity compared to the first generation of A. gossypii (T1). …"
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Paeameter ranges and optimal values. حسب Zhen Zhao (159931)

    منشور في 2025
    "…Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …"
  17. 17
  18. 18
  19. 19
  20. 20