Showing 321 - 340 results of 67,312 for search '(((( 2 step decrease ) OR ( 5 we decrease ))) OR ( 5 ((mean decrease) OR (a decrease)) ))', query time: 1.22s Refine Results
  1. 321

    Data_Sheet_2_Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neu... by Yize Li (471459)

    Published 2022
    “…We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. …”
  2. 322

    Data_Sheet_1_Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neu... by Yize Li (471459)

    Published 2022
    “…We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. …”
  3. 323

    Data_Sheet_6_Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neu... by Yize Li (471459)

    Published 2022
    “…We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. …”
  4. 324

    Data_Sheet_3_Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neu... by Yize Li (471459)

    Published 2022
    “…We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. …”
  5. 325

    Data_Sheet_4_Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neu... by Yize Li (471459)

    Published 2022
    “…We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. …”
  6. 326
  7. 327
  8. 328
  9. 329
  10. 330
  11. 331

    Meta data to S5 Fig. by Xiaowen Jiang (8291814)

    Published 2024
    “…Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K<sup>+</sup> channels also scale this anatomical structure, and we determined how one K<sup>+</sup>-leak channel, Kcnk5b, integrates into its developmental program. …”
  12. 332

    Meta data to Fig 5. by Xiaowen Jiang (8291814)

    Published 2024
    “…Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K<sup>+</sup> channels also scale this anatomical structure, and we determined how one K<sup>+</sup>-leak channel, Kcnk5b, integrates into its developmental program. …”
  13. 333
  14. 334
  15. 335
  16. 336
  17. 337
  18. 338
  19. 339
  20. 340