Showing 1 - 20 results of 5,541 for search '(((( 26 0 decrease ) OR ( _ ((stem decrease) OR (nn decrease)) ))) OR ( _ largest decrease ))', query time: 0.62s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  11. 11

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  12. 12

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  13. 13

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  14. 14

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  15. 15

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  16. 16

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  17. 17

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Orbital analysis reveals that earlier phosphenium cations fail to exhibit metallomimetic H<sub>2</sub> activation due to the inaccessibility of suitable molecular orbitals, stemming from the structural features of the ligands. …”
  18. 18
  19. 19
  20. 20

    Comparison of MAP@0.5 results from experiments. by Junyan Wang (4738518)

    Published 2025
    “…In response to the adverse effects caused by inconsistent annotation quality on defect image detection performance, we incorporate Wise-IoU-V3 loss function to optimize boundary box regression performance effectively mitigating negative impacts stemming from uneven annotation quality. Experimental results demonstrate that SCI-YOLO11 achieves a 3.2% improvement over baseline models in terms of MAP@0.5 metric; precision and recall rates increase by 2.6% and 3.7%, respectively. …”