Search alternatives:
026 decrease » _ decrease (Expand Search), a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
50 c » 5 c (Expand Search), 50 μ (Expand Search), 50 _ (Expand Search)
026 decrease » _ decrease (Expand Search), a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
50 c » 5 c (Expand Search), 50 μ (Expand Search), 50 _ (Expand Search)
-
21
6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations
Published 2025“…After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
-
22
6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations
Published 2025“…After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
-
23
6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (F-53B) Induces Aging and Parkinson’s Disease-like Disorders in <i>C. elegans</i> at Low Concentrations
Published 2025“…After exposure to F-53B at 2, 10, and 50 ng/L, C. elegans showed an aging phenomenon as lipofuscin was significantly increased by 48.7–57.5% and locomotion, such as center point speed, was significantly decreased in all exposure groups. …”
-
24
Data_Sheet_1_Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction.PDF
Published 2021“…Means PIINP (9.05 ± 2.15 ng/ml) levels increased post-race (10.82 ± 3.44 ng/ml) (p = 0.053) and 48 h post-race (11.00 ± 2.96 ng/ml) (p = 0.001). Mean sC2C levels (220.83 ± 39.50 ng/ml) decreased post-race (188.67 ± 38.52 ng/ml) (p = 0.002). …”
-
25
-
26
-
27
-
28
-
29
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
30
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
31
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
32
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
33
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
34
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
35
-
36
-
37
-
38
-
39
-
40