Showing 101 - 120 results of 19,967 for search '(((( 5 ht decrease ) OR ( 2 wt decrease ))) OR ( 50 ((nn decrease) OR (a decrease)) ))', query time: 0.70s Refine Results
  1. 101
  2. 102
  3. 103
  4. 104
  5. 105
  6. 106

    NRF2 deficiency increases obesity susceptibility in a mouse menopausal model by Xunwei Wu (5172356)

    Published 2020
    “…In conclusion, the combination of <i>Nrf2</i> deletion and a decline in estrogen level induced a significant increase in bodyweight, which may be associated with their altered glucose and LDL metabolism and decreased 5-HT levels. …”
  7. 107

    Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments by Animesh Gopal (18521180)

    Published 2025
    “…Incorporation of poly­(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”
  8. 108

    Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments by Animesh Gopal (18521180)

    Published 2025
    “…Incorporation of poly­(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”
  9. 109

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…Anthropogenic activities, particularly land use change and management practices, alter the global nitrogen (N) cycle. As a central part of the global N cycle, soil N supply from net N mineralization (NNM) and net nitrification (NN) contributes to over 50% of crop N uptake. …”
  10. 110
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119
  20. 120