Showing 1 - 20 results of 19,800 for search '(((( 50 ((_ decrease) OR (we decrease)) ) OR ( a nn decrease ))) OR ( 5 nm decrease ))', query time: 0.73s Refine Results
  1. 1

    Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s. by Djaloul Karboua (16510091)

    Published 2023
    “…<p>Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s.…”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Predicting pattern diversity decreases as a function of and . by Selim Haj Ali (21222613)

    Published 2025
    “…<p>For 50 Erdős-Rényi graphs with 30 nodes and 70 edges, we split the results into two columns according to the two initial degenerate unstable eigenmodes  +  : on the left, (if ), and on the right, (if ). …”
  17. 17

    DataSheet_1_Circulating exosomes decrease in size and increase in number between birth and age 7: relations to fetal growth and liver fat.pdf by Marta Díaz (337207)

    Published 2023
    “…Circulating exosomes of SGAs (as compared to those of AGAs) had a larger size at birth [146.8 vs 137.8 nm, respectively; p=0.02], and were in lower number at ages 2 [4.3x10<sup>11</sup>vs 5.6x10<sup>11</sup> particles/mL, respectively; p=0.01] and 7 [6.3x10<sup>11</sup>vs 6.8x10<sup>11</sup> particles/mL, respectively; p=0.006]. …”
  18. 18

    The decrease or inhibition of Hsp90 induced REST degradation. by Raúl Orozco-Díaz (7067624)

    Published 2019
    “…(D) The level of REST dramatically reduced in differentiated SH-SY5Y cells treated with GA (1 μM) or PU-H71 (50 nM) at 24 h. …”
  19. 19
  20. 20

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…However, how global land use changes impact soil N supply and potential N loss remains elusive. By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …”