Showing 61 - 80 results of 16,912 for search '(((( 50 ((ns decrease) OR (a decrease)) ) OR ( 50 c decrease ))) OR ( 50 we decrease ))', query time: 1.59s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66

    Exposure to low CO<sub>2</sub> levels decreases ER cholesterol levels. by Nityanand Bolshette (17396845)

    Published 2023
    “…<b>(D, E)</b> The free cholesterol and cholesterol ester levels in the ER membrane from the cells as in <b>(C)</b>, were quantified with shotgun lipidomics analysis (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3002367#pbio.3002367.s007" target="_blank">S7 Fig</a> and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3002367#pbio.3002367.s012" target="_blank">S5 Table</a>) (mean ± SE, <i>n</i> = 3 independent experiments, **<i>P</i> < 0.01, *<i>P</i> < 0.05, nonsignificant (ns) two-sided Student’s <i>t</i> test). …”
  7. 67

    Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol expo... by Frederik Abel (8452101)

    Published 2020
    “…RIPC-EVs decreased H9c2 cell apoptosis compared to control (apoptotic ratio: 0.83; p = 0.0429) while Sham-EVs showed no protection (apoptotic ratio: 0.97). …”
  8. 68
  9. 69

    Data_Sheet_1_Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction.PDF by José A. Hernández-Hermoso (11545663)

    Published 2021
    “…Means PIINP (9.05 ± 2.15 ng/ml) levels increased post-race (10.82 ± 3.44 ng/ml) (p = 0.053) and 48 h post-race (11.00 ± 2.96 ng/ml) (p = 0.001). Mean sC2C levels (220.83 ± 39.50 ng/ml) decreased post-race (188.67 ± 38.52 ng/ml) (p = 0.002). …”
  10. 70

    The decreasing rates of V<sub>p</sub> with temperature. by Nazlı Tunar Özcan (14833635)

    Published 2023
    “…The V<sub>p</sub> and the σ<sub>t</sub> of Çankırı rock salt decrease with increasing temperatures of samples whereas the σ<sub>c</sub> increases. …”
  11. 71
  12. 72
  13. 73
  14. 74
  15. 75
  16. 76

    Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution by Yixiao Dong (2174902)

    Published 2021
    “…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
  17. 77

    Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution by Yixiao Dong (2174902)

    Published 2021
    “…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
  18. 78

    Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution by Yixiao Dong (2174902)

    Published 2021
    “…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
  19. 79

    Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution by Yixiao Dong (2174902)

    Published 2021
    “…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
  20. 80

    Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution by Yixiao Dong (2174902)

    Published 2021
    “…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”