Showing 141 - 160 results of 68,595 for search '(((( 50 ((we decrease) OR (mean decrease)) ) OR ( 5 a decrease ))) OR ( a teer decrease ))', query time: 0.86s Refine Results
  1. 141
  2. 142
  3. 143
  4. 144
  5. 145
  6. 146

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  7. 147

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  8. 148

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  9. 149

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  10. 150

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  11. 151
  12. 152
  13. 153
  14. 154
  15. 155
  16. 156

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  17. 157

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  18. 158
  19. 159
  20. 160