Search alternatives:
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 a » 50 μ (Expand Search), 50 _ (Expand Search), 50 c (Expand Search)
5 we » _ we (Expand Search), 5 wt (Expand Search), 5 w (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 a » 50 μ (Expand Search), 50 _ (Expand Search), 50 c (Expand Search)
5 we » _ we (Expand Search), 5 wt (Expand Search), 5 w (Expand Search)
-
141
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
142
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
143
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
144
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
145
-
146
Image_1_Electroencephalographic Evidence for Individual Neural Inertia in Mice That Decreases With Time.JPEG
Published 2022“…EEG was measured after induction of and emergence from isoflurane administered near the EC<sub>50</sub> dose for loss of righting in genetically inbred mice on a timescale that minimizes pharmacokinetic confounds. …”
-
147
-
148
-
149
-
150
-
151
-
152
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
153
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
154
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
155
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
156
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
157
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
158
-
159
Complete data.
Published 2024“…A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. …”
-
160
Fig 4 -
Published 2024“…A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. …”