Search alternatives:
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
50 c » 5 c (Expand Search), 50 μ (Expand Search), 50 _ (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
e point » _ point (Expand Search), 5 point (Expand Search), a point (Expand Search)
50 c » 5 c (Expand Search), 50 μ (Expand Search), 50 _ (Expand Search)
-
41
-
42
-
43
-
44
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
45
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
46
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
47
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
48
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
49
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60