Search alternatives:
mean decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
50 mean » 20 means (Expand Search)
50 nn » 50 ns (Expand Search), 50 ng (Expand Search), 50 n (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
mean decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
50 mean » 20 means (Expand Search)
50 nn » 50 ns (Expand Search), 50 ng (Expand Search), 50 n (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
The decrease or inhibition of Hsp90 induced REST degradation.
Published 2019“…(D) The level of REST dramatically reduced in differentiated SH-SY5Y cells treated with GA (1 μM) or PU-H71 (50 nM) at 24 h. (E) The REST level decreased by GA more than 50% and (F) PU-H71 more than 80%, respectively. …”
-
10
-
11
-
12
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
13
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
14
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
15
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
16
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
17
-
18
-
19
-
20