Showing 1 - 20 results of 65,978 for search '(((( 50 ppm decrease ) OR ( 50 n decrease ))) OR ((( 5 ppm decrease ) OR ( 5 a decrease ))))', query time: 3.47s Refine Results
  1. 1
  2. 2
  3. 3

    PPM1A facilitates both nuclear distribution and transcription potency of YAP/TAZ. by Ruyuan Zhou (10197187)

    Published 2021
    “…<b>(B–D)</b> Transcription potency of YAP (5 ng), which was suppressed by coexpression of MST1 (50 ng) (B), LATS1 (500 ng) (C), or MAP4K1 (50 ng) (D), was markedly recovered by cotransfection of wild-type PPM1A but not the enzyme-dead PPM1A (D239N). …”
  4. 4
  5. 5

    Downregulation of DOM decreases the abundance of PER and TIM. by Zhenxing Liu (399809)

    Published 2019
    “…Downregulation of DOM decreased PER levels at CT1-5 and CT17-21. (Scale bar: 50 um.) …”
  6. 6
  7. 7
  8. 8

    The participant demographic (n = 1844). by Mahmoud A. Alomari (14780446)

    Published 2023
    “…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported adecrease” in SH during confinement. …”
  9. 9
  10. 10
  11. 11

    GSK343 decreased tumor stemness. by Laura V. Bownes (10276762)

    Published 2021
    “…(C) COA6 cells were treated with GSK343 (0, 5 μM) for 72 hours. qPCR demonstrated a significant decrease in mRNA abundance of known stemness markers Oct4, Nanog, and Sox2 following GSK343 treatment compared to untreated cells. …”
  12. 12

    Prevalence of smoking during COVID19 (n = 1844). by Mahmoud A. Alomari (14780446)

    Published 2023
    “…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported adecrease” in SH during confinement. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    mGluR5 receptor decreased glycinergic currents. by Zi-Yang Zhang (4988555)

    Published 2019
    “…(<b>E</b>) The inhibitory effect of CHPG on GlyR-IPSCs was not blocked by intracellularly loaded GDP-β-S (62.3 ± 6.4% of baseline at 15–20 min post-CHPG, <i>t</i>[6] = 2.782, <i>p</i> = 0.032), chelerythrine (60.9 ± 11.3% of baseline at 15–20 min post-CHPG, <i>t</i>[6] = 2.705, <i>p</i> = 0.035), or Ro-32-0432 (69.9 ± 3.2% of baseline at 15–20 min post-CHPG, <i>t</i>[5] = 8.495, <i>p</i> < 0.001). (<b>F</b>) Postsynaptic loading of U-0126 or PD98059 prevented CHPG from decreasing glycinergic responses (U-0126, 107.6 ± 10.4% of baseline at 15–20 min post-CHPG, <i>t</i>[8] = 0.997, <i>p</i> = 0.348; PD98059, 93.1 ± 5.0% of baseline at 15–20 min post-CHPG, <i>t</i>[5] = 0.883, <i>p</i> = 0.418). …”
  20. 20

    Fig 8 - by B. Ulfhake (6293984)

    Published 2022
    Subjects: