Showing 1 - 20 results of 5,656 for search '(((( _ large decrease ) OR ( all larger decrease ))) OR ( via ((teer decrease) OR (a decrease)) ))', query time: 0.45s Refine Results
  1. 1

    <b>Supporting data for manuscript</b> "<b>Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins</b>" by Kira Shaw (18796168)

    Published 2025
    “…<p dir="ltr">The CSV file 'Eyreetal_DrainingVein_SourceData' contains the averaged time series traces and extracted metrics from individual experiments used across Figures 1-5 in the manuscript "Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins". The following acronyms included in the CSV file are defined as follows: Hbt is total hemoglobin, Art is artery region, DV is draining vein region, WV is whisker vein region, SEM is standard error mean, TS is time series, max peak is maximum peak, min peak is minima, AUC is area under the curve, WT is wild-type, AD is Alzheimer's disease, ATH is atherosclerosis and MIX is mixed AD/atherosclerosis. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  11. 11

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  12. 12

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  13. 13

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  14. 14

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  15. 15

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20