Showing 1 - 20 results of 12,286 for search '(((( _ larger decrease ) OR ( _ ((step decrease) OR (we decrease)) ))) OR ( load data decrease ))', query time: 0.66s Refine Results
  1. 1

    DataSheet1_Decreasing viscosity and increasing accessible load by replacing classical diluents with a hydrotrope in liquid–liquid extraction.docx by Asmae El Maangar (19690522)

    Published 2025
    “…Hydrotropes have never been studied as diluents in the context of metal recycling. We show that using hydrotropes as a diluent decreases the viscosity of solutions by more than a factor of ten, even under high load by extracted cations. …”
  2. 2

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…<p>Using the invasion model, we investigate the effect of switching on and off (black vs grey) invasions with mutualisms halfway through the simulation (i.e. after 500 assembly events). …”
  3. 3
  4. 4

    S9 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  5. 5

    S11 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  6. 6

    S1 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  7. 7

    S10 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  8. 8

    S6 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  9. 9

    S5 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  10. 10

    S4 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  11. 11

    S8 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  12. 12

    S12 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  13. 13

    S3 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  14. 14

    S2 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  15. 15

    S7 Data - by Christoph Anders (4068499)

    Published 2024
    “…The study was conducted with 25%, 50%, and 75% of the upper body weight. Additionally, we varied the starting point (forward tilt and backward tilt) and the direction of rotation. …”
  16. 16
  17. 17
  18. 18

    Increase in physical activity (100 step, 500 steps or 1000 steps) after the challenge according to decrease in screen time < or ≥60 minutes. by Annaëlle Le Steunf (19838110)

    Published 2024
    “…<p>Increase in physical activity (100 step, 500 steps or 1000 steps) after the challenge according to decrease in screen time < or ≥60 minutes.…”
  19. 19

    Algorithm operation steps. by Junyan Wang (4738518)

    Published 2025
    “…To improve model accuracy further, we introduce the SE attention mechanism that adaptively adjusts the weights of feature channels to enhance the discriminative ability of insulator defect features. …”
  20. 20