Showing 1 - 20 results of 15,906 for search '(((( _ largest decrease ) OR ( _ latency decreased ))) OR ( ((via large) OR (a large)) decrease ))', query time: 0.90s Refine Results
  1. 1
  2. 2

    Decrease in the burst onset latency of the recruited neurons leads to pruning of long delay connections. by Yevhen Tupikov (10319281)

    Published 2021
    “…<p>A: Burst onset latency between the parent and the recruited neurons decreases during recruitment. …”
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Norm ISWSVR: A Data Integration and Normalization Approach for Large-Scale Metabolomics by Xian Ding (421647)

    Published 2022
    “…More importantly, Norm ISWSVR also allows a low frequency of QCs, which could significantly decrease the burden of a large-scale experiment. …”
  12. 12
  13. 13
  14. 14
  15. 15

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”
  16. 16

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”
  17. 17

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”
  18. 18

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”
  19. 19

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”
  20. 20

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…Materials that display blue-shifted and enhanced luminescence in response to mechanical stimuli are limited, and the related mechanism is difficult to investigate due to the unclear structural information. In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. …”