Showing 1 - 20 results of 3,215 for search '(((( a ((laser decrease) OR (teer decrease)) ) OR ( _ larger decrease ))) OR ( _ linear decrease ))', query time: 0.49s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Biases in larger populations. by Sander W. Keemink (21253563)

    Published 2025
    “…<p>(<b>A</b>) Maximum absolute bias vs the number of neurons in the population for the Bayesian decoder. Bias decreases with increasing neurons in the population. …”
  9. 9
  10. 10

    The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER. by Charlotte J. van Ginkel (20790466)

    Published 2025
    “…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
  11. 11
  12. 12
  13. 13

    <b>Supporting data for manuscript</b> "<b>Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins</b>" by Kira Shaw (18796168)

    Published 2025
    “…<p dir="ltr">The CSV file 'Eyreetal_DrainingVein_SourceData' contains the averaged time series traces and extracted metrics from individual experiments used across Figures 1-5 in the manuscript "Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins". The following acronyms included in the CSV file are defined as follows: Hbt is total hemoglobin, Art is artery region, DV is draining vein region, WV is whisker vein region, SEM is standard error mean, TS is time series, max peak is maximum peak, min peak is minima, AUC is area under the curve, WT is wild-type, AD is Alzheimer's disease, ATH is atherosclerosis and MIX is mixed AD/atherosclerosis. …”
  14. 14
  15. 15
  16. 16

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  17. 17

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  18. 18

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  19. 19

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  20. 20

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”