Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
parp decrease » pa decreased (Expand Search), step decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ largest » _ large (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
parp decrease » pa decreased (Expand Search), step decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ largest » _ large (Expand Search)
-
1
Inotodiol decreases clone formation in HCC cells.
Published 2025“…In addition, inotodiol showed to induce apoptosis, characterized by an increase in Bax expression, a decrease in Bcl-2, Bcl-XL and MCL1 expression, the initiation of cleaved PARP1 and cleaved caspase 3, and inhibition of the MAPK/ERK pathway. …”
-
2
-
3
-
4
-
5
BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers.
Published 2024“…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. …”
-
6
-
7
Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers.
Published 2024“…<p>(<b>A)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on days 1–22. …”
-
8
-
9
-
10
-
11
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
12
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
13
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
14
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
15
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
16
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
17
-
18
-
19
-
20