Search alternatives:
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
b marked » _ marked (Expand Search), a marked (Expand Search), n marked (Expand Search)
a large » _ large (Expand Search)
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
b marked » _ marked (Expand Search), a marked (Expand Search), n marked (Expand Search)
a large » _ large (Expand Search)
-
1
-
2
<b>The loss of insulin-positive cell clusters precedes the decrease of islet frequency and beta cell area in type 1 diabetes</b>
Published 2025“…Insulin-positive (INS+) single cells (≤10µm), cell clusters (>10 to <35µm), small- and medium-sized islets (35-100µm and 100-200µm) were significantly lost at type 1 diabetes onset, while large INS+ islets (>200µm) were preserved. Moreover, changes in endocrine composition also occurred in mAAb+ donors, including a significant decrease in the INS+ islet fraction. …”
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER.
Published 2025“…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
-
11
-
12
-
13
-
14
BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers.
Published 2024“…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. …”
-
15
-
16
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
17
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
18
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
19
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
20
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”