Showing 1 - 20 results of 6,313 for search '(((( ai large decrease ) OR ( a ((laser decrease) OR (teer decrease)) ))) OR ( _ values decrease ))', query time: 0.52s Refine Results
  1. 1

    HSF2 reduced the decrease in the MMP in Caco-2 cells, which were observed by laser confocal microscopy. by Wen Wang (6570)

    Published 2025
    “…Red fluorescence indicated that there was no obvious abnormality in the MMP, while green fluorescence represented a decrease in the MMP. B: Statistical bar chart of the ratio of red to green fluorescence, <i>P</i> value of less than 0.05 was identified as* and <i>P</i> value of less than 0.01 was identified as**. …”
  2. 2
  3. 3

    Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers. by Luqiong Liu (11537092)

    Published 2024
    “…<p>(<b>A)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on days 1–22. …”
  4. 4
  5. 5
  6. 6

    Data Sheet 1_Emotional prompting amplifies disinformation generation in AI large language models.docx by Rasita Vinay (21006911)

    Published 2025
    “…Introduction<p>The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. …”
  7. 7
  8. 8

    The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER. by Charlotte J. van Ginkel (20790466)

    Published 2025
    “…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
  9. 9
  10. 10
  11. 11
  12. 12

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  13. 13

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  14. 14

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  15. 15

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  16. 16

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  17. 17

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  18. 18
  19. 19
  20. 20