يعرض 1 - 20 نتائج من 16,130 نتيجة بحث عن '(((( algorithm a function ) OR ( algorithm from function ))) OR ( algorithm within function ))', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1

    Route for bays29 output by ABSQL algorithm. حسب Jin Zhang (53297)

    منشور في 2023
    "…DSRABSQL builds upon the Q-learning (QL) algorithm. Considering its problems of slow convergence and low accuracy, four strategies within the QL framework are designed first: the weighting function-based reward matrix, the power function-based initial Q-table, a self-adaptive <i>ε-beam</i> search strategy, and a new Q-value update formula. …"
  2. 2

    Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy حسب Ayla Arslan (17943365)

    منشور في 2024
    "…</p> <p>The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. …"
  3. 3

    Detailed information of benchmark functions. حسب Guangwei Liu (181992)

    منشور في 2024
    "…The primary objective of this method is to create an effective data dimensionality reduction technique for eliminating redundant, irrelevant, and noisy features within high-dimensional datasets. Drawing inspiration from the Chinese idiom “Chai Lang Hu Bao,” hybrid algorithm mechanisms, and cooperative behaviors observed in natural animal populations, we amalgamate the GWO algorithm, the Lagrange interpolation method, and the GJO algorithm to propose the multi-strategy fusion GJO-GWO algorithm. …"
  4. 4
  5. 5
  6. 6

    Sensitivity analysis of the TV-BayesOpt algorithm performance at tracking a periodic temporal drift when the period of the drift is offset from the covariance function period anticipated by the TV-BayesOpt algorithm. حسب John E. Fleming (8533956)

    منشور في 2023
    "…<p>The performance of a scheduler (green line), the TV-BayesOpt with a periodic temporal covariance function (purple line) and the TV-BayesOpt with a periodic and smooth forgetting covariance algorithm were estimated by calculating the AUC value for the associated cumulative regret plot for each implementation at different offset in the true temporal period.…"
  7. 7

    Linear-regression-based algorithms succeed at identifying the correct functional groups in synthetic data, and multi-group algorithms recover more information. حسب Yuanchen Zhao (12905580)

    منشور في 2024
    "…<p>(A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012590#pcbi.1012590.g001" target="_blank">Fig 1</a> with <i>N</i> = 3 true groups, 900 samples and 10% simulated measurement noise. …"
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    The signal detection algorithm for constructing a neurometric function (the probability of segregation as a function of time) generates acceptable buildup fits at <i>DF</i> = 1, 3, 6, 9. حسب Quynh-Anh Nguyen (847240)

    منشور في 2020
    "…Lower panel: The signal detection algorithm constructs neurometric functions using numerical data from all <i>N</i><sub><i>in</i></sub> neuronal units. …"
  16. 16

    Biological Function Assignment across Taxonomic Levels in Mass-Spectrometry-Based Metaproteomics via a Modified Expectation Maximization Algorithm حسب Gelio Alves (51850)

    منشور في 2025
    "…To overcome this limitation, we implemented an expectation-maximization (EM) algorithm, along with a biological function database, within the MiCId workflow. …"
  17. 17
  18. 18

    Algorithm parameter levels. حسب Peng Yao (448155)

    منشور في 2024
    "…Alternatively, the formulated objective functions often deviate from real-world scenarios. …"
  19. 19

    Sensitivity analysis of the TV-BayesOpt algorithm with a forgetting (orange line) or a forgetting-periodic (blue line) covariance function for a range of ε values. حسب John E. Fleming (8533956)

    منشور في 2023
    "…<p>Incorporation of prior knowledge of the temporal variation in the objective function optimum value (blue line) resulted in improved TV-BayesOpt algorithm performance than implementing a forgetting covariance function (orange line) alone. …"
  20. 20