يعرض 101 - 120 نتائج من 5,527 نتيجة بحث عن '(((( algorithm b function ) OR ( algorithm steps function ))) OR ( algorithm python function ))*', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 101
  2. 102

    Comparison of algorithms in two cases. حسب Yi Tao (178829)

    منشور في 2022
    الموضوعات: "…evolutionary genetic algorithm…"
  3. 103

    Flow of the NSGA-II algorithm. حسب Yi Tao (178829)

    منشور في 2022
    الموضوعات: "…evolutionary genetic algorithm…"
  4. 104

    ADT: A Generalized Algorithm and Program for Beyond Born–Oppenheimer Equations of “<i>N</i>” Dimensional Sub-Hilbert Space حسب Koushik Naskar (7510592)

    منشور في 2020
    "…The “ADT” program can be efficiently used to (a) formulate analytic functional forms of differential equations for ADT angles and diabatic potential energy matrix and (b) solve the set of coupled differential equations numerically to evaluate ADT angles, residue due to singularity­(ies), ADT matrices, and finally, diabatic potential energy surfaces (PESs). …"
  5. 105
  6. 106
  7. 107

    Multidomain, Automated Photopatterning of DNA-functionalized Hydrogels (MAPDH). حسب Moshe Rubanov (7289156)

    منشور في 2024
    "…The hydrogel location, size, shape, and composition are specified, after which an automated script is run, and the output is a chamber with photopatterned hydrogels of different sizes, shapes, and compositions. <b>B)</b> Pseudocode for MAPDH in Python. The algorithm takes as input the vials that will be flowed through the patterning chamber. …"
  8. 108
  9. 109

    Fig 8 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  10. 110

    Fig 9 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  11. 111
  12. 112

    Fig 5 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  13. 113

    Fig 11 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  14. 114

    Fig 3 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  15. 115

    Fig 6 - حسب Maryam Shadi (14237349)

    منشور في 2022
    الموضوعات:
  16. 116

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  17. 117

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
  18. 118
  19. 119
  20. 120