بدائل البحث:
algorithms based » algorithm based (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
based function » based functional (توسيع البحث), basis function (توسيع البحث), basis functions (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithms based » algorithm based (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
based function » based functional (توسيع البحث), basis function (توسيع البحث), basis functions (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
21
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…"
-
22
-
23
MCCN Case Study 2 - Spatial projection via modelled data
منشور في 2025"…This repository contains Jupyter notebooks to demonstrate the functionality of the MCCN data cube components.</p><p dir="ltr">The dataset contains input files for the case study (source_data), RO-Crate metadata (ro-crate-metadata.json), results from the case study (results), and Jupyter Notebook (MCCN-CASE 2.ipynb)</p><h4><b>Research Activity Identifier (RAiD)</b></h4><p dir="ltr">RAiD: https://doi.org/10.26292/8679d473</p><h4><b>Case Studies</b></h4><p dir="ltr">This repository contains code and sample data for the following case studies. …"
-
24
-
25
Code and data for evaluating oil spill amount from text-form incident information
منشور في 2025"…These are separately stored in the folders “description” and “posts”.</p><h2>Algorithms for Evaluating Release Amount (RA)</h2><p dir="ltr">The algorithms are split into the following three notebooks based on their functions:</p><ol><li><b>"1_RA_extraction.ipynb"</b>:</li><li><ul><li>Identifies oil spill-related incidents from raw incident data.…"
-
26
CSPP instance
منشور في 2025"…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…"
-
27
Code
منشور في 2025"…</p><p><br></p><p dir="ltr"><b>RNA functional analysis</b></p><p dir="ltr">Gene Ontology (GO) analysis was performed using the Metascape website, and gene set enrichment analysis (GSEA) was conducted using the GSEABase and enrichplot packages in R. …"
-
28
Core data
منشور في 2025"…</p><p><br></p><p dir="ltr"><b>RNA functional analysis</b></p><p dir="ltr">Gene Ontology (GO) analysis was performed using the Metascape website, and gene set enrichment analysis (GSEA) was conducted using the GSEABase and enrichplot packages in R. …"
-
29
Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100)
منشور في 2025"…Bias correction was conducted using a 25-year baseline (1990–2014), with adjustments made monthly to correct for seasonal biases. The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …"
-
30
Decoding fairness motivations - repository
منشور في 2020"…</div><div>Anatomical scans were reoriented to the FSL standard orientation and skull-stripped. </div><div>The functional data was motion corrected to the mean image using FSL’s MCFLIRT and coregistered to the anatomical scan and normalized to the standard MNI brain using boundary-based registration (FSL FLIRT & FNIRT).…"
-
31
Barro Colorado Island 50-ha plot aerial photogrammetry orthomosaics and digital surface models for 2018-2023: Globally and locally aligned time series.
منشور في 2023"…<p dir="ltr"><b>Data Citation</b></p><p dir="ltr">Please cite this dataset as follows:</p><p dir="ltr">Vásquez, Vicente, Milton García, Melvin Hernández, and Helene C. …"
-
32
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"