بدائل البحث:
based functional » a functional (توسيع البحث), brain functional (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm its » algorithm i (توسيع البحث), algorithm etc (توسيع البحث), algorithm iqa (توسيع البحث)
its function » i function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
based functional » a functional (توسيع البحث), brain functional (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm its » algorithm i (توسيع البحث), algorithm etc (توسيع البحث), algorithm iqa (توسيع البحث)
its function » i function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
-
81
Flowchart of the IFPA algorithm.
منشور في 2023"…The adaptive adjustment of the transition probability effectively balances the development and exploration abilities of the algorithm. The improved flower pollination algorithm (IFPA) outperformed six classical benchmark functions that were used to verify the superiority of the improved algorithm. …"
-
82
-
83
-
84
Algorithm parameter settings.
منشور في 2025"…The results revealed that the improved multi-objective differential evolution algorithm in Zitzler-Deb-Thiele 1 function test had generational distance of 0.0513, inverted generational distance of 0.3265, and hyper volume metric of 0.1301. …"
-
85
Algorithm of the main experiment targeted to measure the perceptual point spread function (pPSF) treating patients visual system including its optics, physiology and psychology as an integrated imaging system, and patient’s perceptions as its output signal.
منشور في 2024"…<p>In the algorithm, the following variables were used: “Ic” denotes the intensity of the central diode (Ic = 40 cd); “DIST(i)” is a randomly sorted list of “D” angular stimuli positions distributed equally as a function of distance from 0.24° to 7.67° from the central point (D = 10), while “i” is an index corresponding to the current distance of a probe diode (“d”); “N” denotes the number of trials for each stimuli position (N = 20); “s” denotes the perceptual brightness value transformed to diode luminous intensity by an array “I(s)” corresponds to the table “scale (level)” determined by the algorithm presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0306331#pone.0306331.g003" target="_blank">Fig 3</a>; “cnt” is a counter of trials for the current probe diode’s distance, array threshold (d), and slope (d), i.e., it denotes the intensity of the single point of the pPSF and its uncertainty. …"
-
86
-
87
-
88
Standard benchmark functions [42].
منشور في 2025"…Thus, an enhanced Whale Optimization Algorithm (LSWOA) based on multiple strategies is proposed, aiming to overcome the limitations of the canonical WOA. …"
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100