يعرض 1 - 20 نتائج من 4,516 نتيجة بحث عن '(((( algorithm basis functions ) OR ( algorithm its function ))) OR ( algorithm python function ))', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…Ertl’s algorithm is an approach to extract functional groups in arbitrary organic molecules that does not depend on predefined libraries of functional groups. …"
  2. 2
  3. 3
  4. 4
  5. 5

    Performance profiles of these algorithms on the basis of the number of function evaluations. حسب Xianfeng Ding (535904)

    منشور في 2021
    "…<p>Performance profiles of these algorithms on the basis of the number of function evaluations.…"
  6. 6

    The schematic view of the Radial Basis Function (RBF) algorithm. حسب Mohsen Yoosefzadeh-Najafabadi (6917399)

    منشور في 2021
    "…<p>The schematic view of the Radial Basis Function (RBF) algorithm.</p>…"
  7. 7
  8. 8
  9. 9

    Explained variance ration of the PCA algorithm. حسب Abeer Aljohani (18497914)

    منشور في 2025
    "…<div><p>Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. …"
  10. 10
  11. 11

    Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications حسب P. Bernát Szabó (10526316)

    منشور في 2023
    "…The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD­(T) variant are adopted, including the iteration- and redundancy-free second-order Møller–Plesset and (T) formulations as well as the integral-direct, memory- and disk use-economic, and OpenMP-parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD­(T) method approaches that of its closed-shell parent method due to the application of restricted orbital sets for demanding integral transformations and a novel approximation for higher-order long-range spin-polarization effects. …"
  12. 12

    Cost function calculated by SA with different hyperparameters. حسب Takuro Matsuta (21608505)

    منشور في 2025
    الموضوعات: "…currently available algorithms…"
  13. 13

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results حسب Se-Hee Jo (20554623)

    منشور في 2025
    "…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
  14. 14

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
  15. 15
  16. 16
  17. 17

    Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic حسب NELSON L. DIAS (8078003)

    منشور في 2019
    "…With these practical rules, simple summation algorithms provide sufficiently robust results for the calculation of the density function and its definite integrals. …"
  18. 18
  19. 19
  20. 20