Showing 181 - 200 results of 1,288 for search '(((( algorithm etc function ) OR ( algorithm where function ))) OR ( algorithm python function ))', query time: 0.28s Refine Results
  1. 181
  2. 182

    Revisiting the “satisfaction of spatial restraints” approach of MODELLER for protein homology modeling by Giacomo Janson (8138517)

    Published 2019
    “…This program implements the “modeling by satisfaction of spatial restraints” strategy and its core algorithm has not been altered significantly since the early 1990s. …”
  3. 183
  4. 184
  5. 185

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  6. 186

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  7. 187

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  8. 188

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  9. 189

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  10. 190

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  11. 191

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  12. 192

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  13. 193

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  14. 194

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  15. 195

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  16. 196
  17. 197
  18. 198
  19. 199

    Optimization outcome for the Rosenbrock function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  20. 200

    Optimization outcome for the Rastrigin function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”