Search alternatives:
algorithms linear » algorithms under (Expand Search), algorithms less (Expand Search), algorithm lennard (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
linear function » liver function (Expand Search), link function (Expand Search)
python function » protein function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
algorithms linear » algorithms under (Expand Search), algorithms less (Expand Search), algorithm lennard (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
linear function » liver function (Expand Search), link function (Expand Search)
python function » protein function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
-
10
-
11
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
Published 2025“…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
-
12
-
13
-
14
-
15
RMSE results.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
16
Results of the Kherson Area Visual Assessment.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
17
Work flow chart.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
18
Experimental data.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
19
Results of the PY area visual assessment.
Published 2024“…To overcome these limitations, this paper developed a simple and fast adaptive remote sensing image Spatio-Temporal fusion method based on Fit-FC, called Adapt Lasso-Fit-FC (AL-FF). Firstly, the sparse characteristics of time phase change between images are explored, and a time phase change estimation model based on sparse regression is constructed, which overcomes the fuzzy problem of fusion image caused by the failure of linear regression to capture complex nonlinear time phase transition in the weighted Function method, making the algorithm better at capturing details. …”
-
20