Showing 61 - 80 results of 2,381 for search '(((( algorithm flow function ) OR ( algorithm cost function ))) OR ( algorithm python function ))', query time: 0.54s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67
  8. 68
  9. 69
  10. 70

    The summarized flow of the methodology. by Namal Rathnayake (15361124)

    Published 2023
    “…Results of the study showcased that both systems can simulate river flows as a function of catchment rainfalls; however, the Cat gradient Boosting algorithm (CatBoost) has a computational edge over the Adaptive Network Based Fuzzy Inference System (ANFIS). …”
  11. 71

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results by Se-Hee Jo (20554623)

    Published 2025
    “…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
  12. 72
  13. 73
  14. 74

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer by Morgan Najera (21540776)

    Published 2025
    “…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
  15. 75
  16. 76
  17. 77
  18. 78
  19. 79
  20. 80