Showing 121 - 140 results of 12,585 for search '(((( algorithm flow functional ) OR ( algorithm 1 function ))) OR ( algorithm python function ))', query time: 0.90s Refine Results
  1. 121
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127
  8. 128

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  9. 129
  10. 130
  11. 131
  12. 132

    Flowchart of the data flowing into the network. by Maytham S. Jabor (15853046)

    Published 2023
    “…When simulating both approaches, the energy consumed when replacing functions by hardware decreases up to 63%.</p></div>…”
  13. 133

    Flow chart of the search process. by Lei Gao (6566)

    Published 2025
    “…</p><p>Results</p><p>The logistic regression (LR) of the Lasso regression model showed that IVS-AO Angle, Left Ventricular Mass Index (LVMI), Diastolic Left Ventricular Internal Diameter Index (LVIDdI), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Distance from mitral valve closure point to basal segment of interventricular septum (MVCP-Sd), GLU, and Mitral Valve peak A (MV-A) were associated with BSH, with odds ratios (OR) of 0.86 (0.831–0.888), 1.034 (1.018–1.052), 0.104 (0.023–0.403), 1.041 (1.021–1.064), 0.964 (0.93–0.998), 0.852 (0.764–0.949), 1.146 (1.023–1.281), and 0.967 (0.947–0.987), respectively. …”
  14. 134
  15. 135
  16. 136

    Data_Sheet_1_Unsupervised clustering algorithms improve the reproducibility of dynamic contrast-enhanced magnetic resonance imaging pulmonary perfusion quantification in muco-obstr... by Marilisa Konietzke (13999845)

    Published 2022
    “…Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability.…”
  17. 137

    The optimal solution set of NYN by using different algorithms. by Yi Tao (178829)

    Published 2022
    Subjects: “…evolutionary genetic algorithm…”
  18. 138

    The optimal solution set of HN by using different algorithms. by Yi Tao (178829)

    Published 2022
    Subjects: “…evolutionary genetic algorithm…”
  19. 139
  20. 140