بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
-
121
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
122
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
123
-
124
-
125
Optimization outcome for the Rosenbrock function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
126
Optimization outcome for the Rastrigin function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
127
2D Rastrigin function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
128
2D Levy function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
129
2D Rosenbrock function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
130
Optimization outcome for the Levy function.
منشور في 2025"…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …"
-
131
-
132
Details of the metaheuristic algorithms.
منشور في 2025"…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
-
133
Parameter settings for algorithms.
منشور في 2025"…<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. …"
-
134
Exponentially attenuated sinusoidal function.
منشور في 2025"…The Pareto optimal front was generated using MOCOA with the indicators of spectral kurtosis and KL divergence, by which the optimal intrinsic mode functions were obtained. A deep VMD-attention network based on MOCOA was developed for ECG signal classification. …"
-
135
PATH has state-of-the-art performance versus previous binding affinity prediction algorithms.
منشور في 2025"…The benchmarked algorithms include physics-based and deep learning algorithms from the famous AutoDock framework (scoring function of AutoDock4 implemented in the AutoDockFR package [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref068" target="_blank">68</a>,<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref077" target="_blank">77</a>], Vinardo [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref069" target="_blank">69</a>], GNINA [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref070" target="_blank">70</a>]), empirical (AA-Score [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref071" target="_blank">71</a>]), knowledge-based (SMoG2016 [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref072" target="_blank">72</a>]), and deep learning-based scoring functions (OnionNet [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref073" target="_blank">73</a>], PLANET [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref074" target="_blank">74</a>]). …"
-
136
(a): These systems were simulated for (0,3] and (0,3] without the prior knowledge about different phases, and the probability density function of points in feature space illustrate...
منشور في 2025"…(b): The dense areas are separated by removing the data less than threshold = 0.5 in the probability density function. (c): The centroid of each cluster is determined by the K-means algorithm.…"
-
137
-
138
Fitness comparison on test function.
منشور في 2025"…The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. …"
-
139
Hash function construct used in SKINNY-tk3-hash.
منشور في 2024"…These devices gather information from their environment and send it across a network. …"
-
140
PyNoetic’s online mode in action. Data is streamed from an Emotiv EPOC headset.
منشور في 2025الموضوعات: