بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
-
201
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
202
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
203
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
204
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
205
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
206
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
207
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
208
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
209
Rosenbrock function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
210
Flow chart diagram of quantum hash function.
منشور في 2024"…Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. …"
-
211
NRPStransformer, an Accurate Adenylation Domain Specificity Prediction Algorithm for Genome Mining of Nonribosomal Peptides
منشور في 2025"…Our work lays a foundation to understand the sequence-to-function relationship of the bacterial adenylation domain and will facilitate the exploitation of nonribosomal peptides. …"
-
212
-
213
-
214
-
215
LBQANA python code + Merged Gene Expression Dataset from GSE10810, GSE17907, GSE20711, GSE42568, GSE45827, and GSE61304 for Breast Cancer Biomarker Discovery
منشور في 2025"…To address batch effects introduced during the merging process, the Empirical Bayes algorithm from the sva package (via the ComBat function) was applied. …"
-
216
Type-1 membership function for distance.
منشور في 2025"…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
-
217
Type-1 membership function for speed.
منشور في 2025"…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
-
218
-
219
-
220
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"