يعرض 201 - 220 نتائج من 2,615 نتيجة بحث عن '(((( algorithm from function ) OR ( algorithm pca function ))) OR ( algorithm python function ))', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 201

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  2. 202

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  3. 203

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  4. 204

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  5. 205

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  6. 206

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  7. 207

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  8. 208

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  9. 209

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  10. 210

    Flow chart diagram of quantum hash function. حسب Sultan H. Almotiri (14029251)

    منشور في 2024
    "…Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. …"
  11. 211

    NRPStransformer, an Accurate Adenylation Domain Specificity Prediction Algorithm for Genome Mining of Nonribosomal Peptides حسب Zhihan Zhang (1403308)

    منشور في 2025
    "…Our work lays a foundation to understand the sequence-to-function relationship of the bacterial adenylation domain and will facilitate the exploitation of nonribosomal peptides. …"
  12. 212
  13. 213
  14. 214
  15. 215

    LBQANA python code + Merged Gene Expression Dataset from GSE10810, GSE17907, GSE20711, GSE42568, GSE45827, and GSE61304 for Breast Cancer Biomarker Discovery حسب M RN (9866504)

    منشور في 2025
    "…To address batch effects introduced during the merging process, the Empirical Bayes algorithm from the sva package (via the ComBat function) was applied. …"
  16. 216

    Type-1 membership function for distance. حسب Seung-Min Ryu (21463891)

    منشور في 2025
    "…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
  17. 217

    Type-1 membership function for speed. حسب Seung-Min Ryu (21463891)

    منشور في 2025
    "…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
  18. 218
  19. 219
  20. 220

    The convergence curves of the test functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"