Showing 1 - 20 results of 2,709 for search '(((( algorithm from function ) OR ( algorithm where function ))) OR ( algorithm python function ))', query time: 0.59s Refine Results
  1. 1

    Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results by Se-Hee Jo (20554623)

    Published 2025
    “…A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …”
  2. 2

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer by Morgan Najera (21540776)

    Published 2025
    “…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
  3. 3
  4. 4
  5. 5
  6. 6

    If datasets are small and/or noisy, linear-regression-based algorithms for identifying functional groups outperform more complex versions. by Yuanchen Zhao (12905580)

    Published 2024
    “…Both versions are evaluated on the same synthetic datasets with a 3-group ground truth. Each algorithm return a set of coarsened <i>variables</i> (a grouping of species into three groups) and a <i>model</i> that uses these variables to predict the function. …”
  7. 7
  8. 8
  9. 9

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  10. 10

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  11. 11

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  12. 12

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  13. 13

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  14. 14

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  15. 15

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  16. 16

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  17. 17

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  18. 18

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  19. 19

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  20. 20

    Optimization outcome for the Rosenbrock function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”