بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm ai » algorithm a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
ai function » api function (توسيع البحث), a function (توسيع البحث), gi function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm ai » algorithm a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
ai function » api function (توسيع البحث), a function (توسيع البحث), gi function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
21
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
منشور في 2021"…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
-
22
-
23
-
24
-
25
-
26
ADT: A Generalized Algorithm and Program for Beyond Born–Oppenheimer Equations of “<i>N</i>” Dimensional Sub-Hilbert Space
منشور في 2020"…For the numerical case, user can directly provide <i>ab initio</i> data (adiabatic PESs and NACTs) as input files to this software or can generate those input files through in-built python codes interfacing MOLPRO followed by ADT calculation. …"
-
27
-
28
-
29
-
30
-
31
-
32
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
منشور في 2021"…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
-
33
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
منشور في 2021"…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
-
34
-
35
-
36
-
37
-
38
-
39
-
40