يعرض 161 - 180 نتائج من 13,418 نتيجة بحث عن '(((( algorithm l function ) OR ( algorithm used function ))) OR ( algorithm python function ))', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 161
  2. 162

    Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions. حسب Yang Cao (53545)

    منشور في 2024
    "…<p>Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions.…"
  3. 163

    Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100. حسب Yang Cao (53545)

    منشور في 2024
    "…<p>Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100.…"
  4. 164
  5. 165
  6. 166
  7. 167

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  8. 168

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  9. 169

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  10. 170
  11. 171

    Flowchart of the specific incarnation of the BO algorithm used in the experiments. حسب Lisa Laux (9367681)

    منشور في 2020
    "…To choose the next pipeline configuration to evaluate, the BO algorithm uses an Expected Improvement function to trade off maximisation of QS with the need to fully learn the GP. …"
  12. 172

    Swarm intelligence algorithms for width and length on influence games حسب Francisco Muñoz (9455441)

    منشور في 2021
    "…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…"
  13. 173
  14. 174
  15. 175
  16. 176

    Graphs of the regularization terms. حسب Tomokaze Shiratori (9635271)

    منشور في 2024
    الموضوعات:
  17. 177
  18. 178
  19. 179

    Table_4_Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging.DOCX حسب Josefa Díaz-Álvarez (5572427)

    منشور في 2022
    "…Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). …"
  20. 180

    Table_1_Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging.DOCX حسب Josefa Díaz-Álvarez (5572427)

    منشور في 2022
    "…Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). …"