يعرض 141 - 160 نتائج من 13,418 نتيجة بحث عن '(((( algorithm l function ) OR ( algorithms using function ))) OR ( algorithm python function ))*', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 141

    Structure of the LMPEC algorithm model. حسب Hao Wu (65943)

    منشور في 2024
    الموضوعات:
  2. 142
  3. 143
  4. 144
  5. 145

    Eight commonly used benchmark functions. حسب Guangwei Liu (181992)

    منشور في 2023
    "…The proposed algorithm was evaluated on eight standard benchmark functions, CEC2019 benchmark functions, four engineering design problems, and a PID parameter optimization problem. …"
  6. 146
  7. 147

    Standard benchmark functions used for the experimentation of EOSA and other similar optimization algorithms. حسب Tehnan I. A. Mohamed (16846175)

    منشور في 2023
    "…<p>Standard benchmark functions used for the experimentation of EOSA and other similar optimization algorithms.…"
  8. 148

    Revisiting the “satisfaction of spatial restraints” approach of MODELLER for protein homology modeling حسب Giacomo Janson (8138517)

    منشور في 2019
    "…Secondly, we have inquired into how the incorporation of statistical potential terms (such as the DOPE potential) in the MODELLER’s objective function impacts positively 3D modeling quality by providing a small but consistent improvement in metrics such as GDT-HA and lDDT and a large increase in stereochemical quality. …"
  9. 149

    Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions. حسب Yang Cao (53545)

    منشور في 2024
    "…<p>Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions.…"
  10. 150

    Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100. حسب Yang Cao (53545)

    منشور في 2024
    "…<p>Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100.…"
  11. 151

    The parameters of algorithms. حسب Le Huu Binh (18340233)

    منشور في 2025
    الموضوعات:
  12. 152

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  13. 153

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  14. 154

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses حسب Dominykas Lukauskis (14143149)

    منشور في 2022
    "…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
  15. 155

    Swarm intelligence algorithms for width and length on influence games حسب Francisco Muñoz (9455441)

    منشور في 2021
    "…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…"
  16. 156
  17. 157

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
  18. 158

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
  19. 159

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
  20. 160

    Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta حسب Morgan L. Nance (10981871)

    منشور في 2021
    "…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"