بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
python function » protein function (توسيع البحث)
phase function » phase functions (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
algorithm step » algorithm steps (توسيع البحث), algorithm used (توسيع البحث), algorithm etc (توسيع البحث)
step function » system function (توسيع البحث), islet function (توسيع البحث), its function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
python function » protein function (توسيع البحث)
phase function » phase functions (توسيع البحث), sphere function (توسيع البحث), rate function (توسيع البحث)
algorithm step » algorithm steps (توسيع البحث), algorithm used (توسيع البحث), algorithm etc (توسيع البحث)
step function » system function (توسيع البحث), islet function (توسيع البحث), its function (توسيع البحث)
-
1
Landscape17
منشور في 2025"…In general, there may be multiple transition states between two minima, and there may be gaps in the connection profile. The two-phase procedure is applied until a complete discrete path is obtained, using the missing connection algorithm to propose new pairs of minima for additional searches.…"
-
2
Decoding fairness motivations - repository
منشور في 2020"…</div><div>Subsequently, the response options appeared, 0 to 14 € in steps of two, and participants could indicate their choice.…"
-
3
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"