بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
phase functions » phase reactions (توسيع البحث), wave functions (توسيع البحث), phase durations (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm a » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithms _ (توسيع البحث)
a function » _ function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm phase » algorithm based (توسيع البحث), algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
phase functions » phase reactions (توسيع البحث), wave functions (توسيع البحث), phase durations (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm a » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithms _ (توسيع البحث)
a function » _ function (توسيع البحث)
-
1
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…<p dir="ltr"><b>Opti2Phase: Python Scripts for Two-Stage Focal Reducer Design</b></p><p dir="ltr">The folder <b>Opti2Phase</b> contains the Python scripts used to generate the results presented in the manuscript. …"
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
Revisiting the “satisfaction of spatial restraints” approach of MODELLER for protein homology modeling
منشور في 2019"…Python modules to harness this second strategy are freely available at <a href="https://github.com/pymodproject/altmod" target="_blank">https://github.com/pymodproject/altmod</a>. …"
-
11
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …"
-
12
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
-
13
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
-
14
Landscape17
منشور في 2025"…In general, there may be multiple transition states between two minima, and there may be gaps in the connection profile. The two-phase procedure is applied until a complete discrete path is obtained, using the missing connection algorithm to propose new pairs of minima for additional searches.…"
-
15
Decoding fairness motivations - repository
منشور في 2020"…</div><div>To obtain neural activation patterns for multivariate analysis individual time series were modeled using a double γ hemodynamic response function in a single trial GLM design using FSL’s FEAT. …"