يعرض 41 - 60 نتائج من 10,418 نتيجة بحث عن '(((( algorithm pre function ) OR ( algorithm based functional ))) OR ( algorithm python function ))', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 41

    The AD-PSO-Guided WOA LSTM algorithm RMSE is based on the objective function compared to different algorithms. حسب Ahmed M. Elshewey (21463867)

    منشور في 2025
    "…<p>The AD-PSO-Guided WOA LSTM algorithm RMSE is based on the objective function compared to different algorithms.…"
  2. 42
  3. 43

    A hybrid algorithm based on improved threshold function and wavelet transform. حسب Bingbing Li (461702)

    منشور في 2024
    "…<p>A hybrid algorithm based on improved threshold function and wavelet transform.…"
  4. 44

    Performance profile of the four algorithms based on the function value of iteration number. حسب Sulaiman M. Ibrahim (20614376)

    منشور في 2025
    "…<p>Performance profile of the four algorithms based on the function value of iteration number.…"
  5. 45
  6. 46
  7. 47

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit حسب Gonzalo Colmenarejo (650249)

    منشور في 2025
    "…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
  8. 48
  9. 49

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  10. 50
  11. 51
  12. 52

    S1 File - حسب Yuh-Chin T. Huang (17867207)

    منشور في 2024
    الموضوعات:
  13. 53

    S1 Dataset - حسب Yuh-Chin T. Huang (17867207)

    منشور في 2024
    الموضوعات:
  14. 54
  15. 55

    The optimal solution set of NYN by using different algorithms. حسب Yi Tao (178829)

    منشور في 2022
    الموضوعات: "…evolutionary genetic algorithm…"
  16. 56

    The optimal solution set of HN by using different algorithms. حسب Yi Tao (178829)

    منشور في 2022
    الموضوعات: "…evolutionary genetic algorithm…"
  17. 57

    DataSheet2_Benefits and Challenges of Pre-clustered Network-Based Pathway Analysis.PDF حسب Miguel Castresana-Aguirre (12521683)

    منشور في 2022
    "…We explored whether network-based pre-clustering of a query gene set can improve pathway analysis. …"
  18. 58

    DataSheet1_Benefits and Challenges of Pre-clustered Network-Based Pathway Analysis.CSV حسب Miguel Castresana-Aguirre (12521683)

    منشور في 2022
    "…We explored whether network-based pre-clustering of a query gene set can improve pathway analysis. …"
  19. 59
  20. 60