Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm where (Expand Search), algorithm used (Expand Search), algorithm from (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), three function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm where (Expand Search), algorithm used (Expand Search), algorithm from (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), three function (Expand Search)
algorithm fc » algorithm etc (Expand Search), algorithm pca (Expand Search), algorithms mc (Expand Search)
fc function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
-
681
Data_Sheet_1_Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study.xlsx
Published 2024“…Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD.…”
-
682
Data_Sheet_2_Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study.docx
Published 2024“…Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD.…”
-
683
Image_2_Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study.TIF
Published 2024“…Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD.…”
-
684
Image_1_Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study.TIF
Published 2024“…Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD.…”
-
685
Skeletal_ Muscle_MRI_Registration
Published 2020“…</p> <p>wxPython library was employed to develop the GUI, which is composed by two main windows – initial window and registration window – and 5 secondary frames for support functionalities. 3D images are presented with three views – axial, coronal and sagittal – with three sliders to adjust maximum value, minimum value, and gamma correction.…”
-
686
A paired dataset of multi-modal MRI at 3 Tesla and 7 Tesla with manual hippocampal subfield segmentations on 7T T2-weighted images
Published 2024“…</p><p dir="ltr">The dataset is freely accessible on IEEE DataPort, a data repository created by IEEE and can be found at the following URL: <a href="https://ieeexplore.ieee.org/document/10218394/algorithms?tabFilter=dataset" target="_blank">https://ieeexplore.ieee.org/document/10218394/algorithms?…”
-
687
BioSCape Processed Training Dataset
Published 2024“…The dataset was prepared according to the following pre-agreed criteria:</p><ul><li>As many points as possible were collected</li><li>The classes needed to be even (same number of training points) for the machine learning algorithms</li><li>Points didn’t need to be paired (i.e. paired invasive alien tree and fynbos points)</li><li>It was not necessary to collect training data in all sampling units, though a general effort to avoid bias and to sample across different sampling units was attempted</li></ul><p></p>…”
-
688
Image 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
689
Table 3_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
690
Table 8_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
691
Table 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
692
Table 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
693
Image 2_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
694
Table 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
695
Table 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
696
Image 5_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
697
Image 1_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tiff
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
698
Table 7_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
699
Table 4_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
700
Image 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”