Showing 141 - 160 results of 11,235 for search '(((( algorithm python function ) OR ( algorithm from function ))) OR ( algorithm b function ))', query time: 0.69s Refine Results
  1. 141

    EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit by Gonzalo Colmenarejo (650249)

    Published 2025
    “…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …”
  2. 142

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  3. 143
  4. 144
  5. 145

    metropolis_hastings.py;postprocessing.py;folkman_a_b_c_time.py;figures_Inverse_Proliferation.R;README.md from Bayesian inference of a non-local proliferation model by Zuzanna Szymańska (11679819)

    Published 2021
    “…;Auxiliary R (version 3.6.2) code to generate figures presenting the results of the random walk Metropolis-Hastings algorithm for the Bayesian inference of a non-local proliferation function.…”
  6. 146

    Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn–Sham Approach by Diptarka Hait (2835971)

    Published 2020
    “…ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. …”
  7. 147

    Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn–Sham Approach by Diptarka Hait (2835971)

    Published 2020
    “…ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. …”
  8. 148
  9. 149
  10. 150

    Reflection matrix microscopy data and CLASS algorithms by Sungsam Kang (18931031)

    Published 2025
    “…</li><li>Example_RMM_simulation.m: Generate RM simulation data.</li></ul><h4><b>Functions (...\RMM_functions)</b></h4><ul><li>RM_get_image.m: Reconstruct target images from an RM using aperture synthesis.…”
  11. 151
  12. 152

    The optimal solution set of NYN by using different algorithms. by Yi Tao (178829)

    Published 2022
    Subjects: “…evolutionary genetic algorithm…”
  13. 153

    The optimal solution set of HN by using different algorithms. by Yi Tao (178829)

    Published 2022
    Subjects: “…evolutionary genetic algorithm…”
  14. 154
  15. 155
  16. 156
  17. 157
  18. 158
  19. 159
  20. 160