بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
from functional » brain functional (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
from functional » brain functional (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
-
161
Image_1_NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data.pdf
منشور في 2020"…Moreover, RSA is suitable for researchers to compare data from different modalities and even bridge data from different species. …"
-
162
Presentation_3_NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data.pdf
منشور في 2020"…Moreover, RSA is suitable for researchers to compare data from different modalities and even bridge data from different species. …"
-
163
Presentation_1_NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data.pdf
منشور في 2020"…Moreover, RSA is suitable for researchers to compare data from different modalities and even bridge data from different species. …"
-
164
Table_3_NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data.pdf
منشور في 2020"…Moreover, RSA is suitable for researchers to compare data from different modalities and even bridge data from different species. …"
-
165
-
166
Test function information.
منشور في 2023"…By non-parametric statistical analysis, MSIPOA shows a greater superiority over other optimization algorithms. The MSIPOA algorithm is then experimented with symmetric cross-entropy multilevel threshold image segmentation, and eight images from BSDS300 are selected as the test set to evaluate MSIPOA. …"
-
167
-
168
-
169
Signal detection algorithm adapted from [1] yields exponential distributions and unrealistic mean durations of percepts.
منشور في 2020"…(Bottom) Trial-by-trial applications of the signal detection algorithm from [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1008152#pcbi.1008152.ref001" target="_blank">1</a>] with A: <i>C</i><sub><i>th</i></sub> = 4.01 and B: <i>C</i><sub><i>th</i></sub> = 4.21 yield exponentially distributed subsequent percept durations for <i>I</i> (blue) and <i>S</i> (red). …"
-
170
-
171
Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy
منشور في 2024"…</p> <p>The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. …"
-
172
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
173
Feature selection algorithm.
منشور في 2023"…Our analysis pipeline included pre-processing steps, feature extraction from both time and frequency domains, a voting algorithm for selecting features, and model training and validation. …"
-
174
CEC2017 basic functions.
منشور في 2025"…The optimal individual’s position is updated by randomly selecting from these factors, enhancing the algorithm’s ability to attain the global optimum and increasing its overall robustness. …"
-
175
An Algorithmic Approach Based on Data Trees and Genetic Algorithms to Understanding Charged and Neutral Metal Nanocluster Growth
منشور في 2022"…We present a data tree-based approach to mapping these reaction pathways based on structures and energies obtained from Density Functional Theory (DFT) computations and including positive, negative, and neutral clusters in a continuum solvent of water. …"
-
176
-
177
Imperialist competition algorithm with quasi-opposition-based learning for function optimization and engineering design problems
منشور في 2024"…The effectiveness of the proposed QOBL-ICA is verified by testing on 20 benchmark functions and 3 engineering design problems. Experimental results show that the performance of QOBL-ICA is superior to most state-of-the-art meta-heuristic algorithms in terms of global optimum reached and convergence speed.…"
-
178
Test function results.
منشور في 2025"…From the statistical results of mean, best and variance of different algorithms, the LLSKSO algorithm outperforms the other algorithms. …"
-
179
Benchmark test functions.
منشور في 2025"…From the statistical results of mean, best and variance of different algorithms, the LLSKSO algorithm outperforms the other algorithms. …"
-
180
GraSPy: an Open Source Python Package for Statistical Connectomics
منشور في 2019"…GraSPy builds on Python’s existing graph and machine learning ecosystem by accepting input from NetworkX and complying with the scikit-learn API. …"