Showing 1 - 20 results of 4,415 for search '(((( algorithm rate function ) OR ( algorithm fc function ))) OR ( algorithm within function ))', query time: 1.23s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  7. 7
  8. 8
  9. 9

    Test functions. by Kejia Liu (5699651)

    Published 2025
    Subjects:
  10. 10

    The convergence curves of the test functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  11. 11

    Single-peaked reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  18. 18

    Fixed-dimensional multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  19. 19

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  20. 20

    Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023) by Prad Kadambi (16680635)

    Published 2023
    “…Estimated rates achieve a high test-retest reliability (<em>r</em> = .95) and show good correlation with the revised ALS functional rating scale speech subscore (<em>r </em>= .67).…”