بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm three » algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
three function » three functional (توسيع البحث), tree functional (توسيع البحث), time function (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm three » algorithm where (توسيع البحث), algorithm pre (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
three function » three functional (توسيع البحث), tree functional (توسيع البحث), time function (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
-
1
-
2
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
منشور في 2019"…BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. …"
-
3
-
4
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
5
-
6
metropolis_hastings.py;postprocessing.py;folkman_a_b_c_time.py;figures_Inverse_Proliferation.R;README.md from Bayesian inference of a non-local proliferation model
منشور في 2021"…;Auxiliary R (version 3.6.2) code to generate figures presenting the results of the random walk Metropolis-Hastings algorithm for the Bayesian inference of a non-local proliferation function.…"
-
7
-
8
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…The described extracted features were used to predict leaf betalain content (µg per FW) using multiple machine learning regression algorithms (Linear regression, Ridge regression, Gradient boosting, Decision tree, Random forest and Support vector machine) using the <i>Scikit-learn</i> 1.2.1 library in Python (v.3.10.1) (list of hyperparameters used is given in <a href="#sup1" target="_blank">Supplementary Data S5</a>). …"
-
9
Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making
منشور في 2025"…To achieve policy learning within limited BiTL training periods, we add two modification features to the proposed algorithm based on TD3. The experiment involving twenty participants has been conducted, and the results show that in continuously high-risk driving scenarios, compared to traditional reinforcement learning algorithms without human participation, the proposed algorithm can maintain a cautious driving policy and avoid potential collisions, validated with both proximal surrogate indicators and success rates. …"
-
10
Landscape17
منشور في 2025"…</p><h3>Transition state location</h3><p dir="ltr">Transition state searches were performed between each minimum and its three nearest neighbours, determined from the Euclidean distance with optimal alignment via the MINPERMDIST routine. …"
-
11
Code
منشور في 2025"…The first fully connected layer consists of 880 input neurons and 512 output neurons, with a ReLU activation function and a dropout rate of 10% applied to prevent overfitting. …"
-
12
Core data
منشور في 2025"…The first fully connected layer consists of 880 input neurons and 512 output neurons, with a ReLU activation function and a dropout rate of 10% applied to prevent overfitting. …"
-
13
Skeletal_ Muscle_MRI_Registration
منشور في 2020"…</p> <p>wxPython library was employed to develop the GUI, which is composed by two main windows – initial window and registration window – and 5 secondary frames for support functionalities. 3D images are presented with three views – axial, coronal and sagittal – with three sliders to adjust maximum value, minimum value, and gamma correction.…"
-
14
Barro Colorado Island 50-ha plot aerial photogrammetry orthomosaics and digital surface models for 2018-2023: Globally and locally aligned time series.
منشور في 2023"…Agisoft LLC. https://www.agisoft.com/pdf/metashape_python_api_2_0_4.pdf.</p><p dir="ltr">Vicente Vasquez. (2023). …"
-
15
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"