Showing 1 - 20 results of 7,933 for search '(((( algorithm rate function ) OR ( algorithm value function ))) OR ( algorithm within function ))', query time: 0.43s Refine Results
  1. 1

    Algorithm membership function. by Mohamed Raef Smaoui (9865830)

    Published 2022
    “…<p>(Top) Input Membership Function. The algorithm classifies glucose input into 4 sets: low, medium, high, and ex_high. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    P -values for SGHHO and other reported algorithms by Wilcoxon test on the benchmark function. by Qiong Wu (84327)

    Published 2023
    “…<p>P -values for SGHHO and other reported algorithms by Wilcoxon test on the benchmark function.…”
  7. 7

    Multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    The convergence curves of the test functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  16. 16

    Single-peaked reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  17. 17
  18. 18

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  19. 19

    Fixed-dimensional multimodal reference functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”
  20. 20

    Test results of multimodal benchmark functions. by Ruiyu Zhan (21602031)

    Published 2025
    “…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …”