Showing 1 - 5 results of 5 for search '(((( algorithm side functions ) OR ( algorithm i function ))) OR ( algorithm python function ))~', query time: 0.48s Refine Results
  1. 1
  2. 2

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…The described extracted features were used to predict leaf betalain content (µg per FW) using multiple machine learning regression algorithms (Linear regression, Ridge regression, Gradient boosting, Decision tree, Random forest and Support vector machine) using the <i>Scikit-learn</i> 1.2.1 library in Python (v.3.10.1) (list of hyperparameters used is given in <a href="#sup1" target="_blank">Supplementary Data S5</a>). …”
  3. 3

    Code and Data for 'Fabrication and testing of lensed fiber optic probes for distance sensing using common path low coherence interferometry' by Radu Stancu (21165068)

    Published 2025
    “…Modelling</p><p dir="ltr">Python code to demonstrate use of Eqn 1 from paper to model fiber probes using coreless and GRIN fiber. …”
  4. 4

    Known compounds and new lessons: structural and electronic basis of flavonoid-based bioactivities by Rohan J. Meshram (6563189)

    Published 2019
    “…Abbreviations2′HFN-2′</p><p>hydroxy flavonone</p>2D<p>2 dimension</p>3D<p>3 dimension</p>3H7MF<p>3-hydroxy-7-methoxy flavone</p>4′HFN-4′<p>hydroxy flavonone</p>4′MF- 4′<p>methoxy flavone</p>7HFN<p>7-hydroxy flavonone</p>CHARMM<p>Chemistry at Harvard Macromolecular Mechanics</p>COX<p>cyclooxygenase</p>COX-1<p>cyclooxygenase-1</p>COX-2<p>cyclooxygenase-2</p>DM<p>dipole moment</p>DPPH- 2, 2<p>diphenyl-1-picryl hydrazine</p>EA<p>electron affinities</p>EGFR<p>epidermal growth factor receptor</p>E-HOMO<p>Highest occupied molecular orbital energy</p>E-LUMO<p>Lowest unoccupied molecular orbital energy</p>EPA<p>eicosapentaenoic acid</p>FROG2<p>FRee Online druG conformation generation</p>GA<p>Genetic Algorithm</p>GROMACS<p>GROningen MAchine for Chemical Simulations</p>HOMO<p>Highest occupied molecular orbital</p>IP<p>Ionization potential</p>LOMO<p>Lowest unoccupied molecular orbital</p>MD<p>Molecular dynamics</p>MO<p>Molecular orbital</p>NAMD<p>Nanoscale Molecular Dynamics</p>NSAIDs<p>Non-Steroidal Anti Inflammatory Drugs</p>Ns<p>nanoseconds</p>NVE<p>Ensemble-constant-energy, constant-volume, Constant particle ensemble</p>PDB-ID<p>Protein Data Bank Identifier</p>PME<p>Particle Mesh Ewald</p>PyRX<p>Python Prescription</p>RMSD<p>Root-Mean-Square Deviation</p>RMSF<p>Root-Mean-Square Fluctuation</p>RLS<p>reactive lipid species</p>ROS<p>Reactive Oxygen Species</p>SASA<p>solvent accessible surface area</p>SMILES<p>simplified molecular-input line-entry system</p>SOR<p>superoxide anion radical</p>UFF<p>Universal force field</p>VEGF<p>vascular endothelial growth factor</p>VEGFR<p>vascular endothelial growth factor receptor</p>VMD<p>Visual molecular dynamics</p><p></p> <p>hydroxy flavonone</p> <p>2 dimension</p> <p>3 dimension</p> <p>3-hydroxy-7-methoxy flavone</p> <p>hydroxy flavonone</p> <p>methoxy flavone</p> <p>7-hydroxy flavonone</p> <p>Chemistry at Harvard Macromolecular Mechanics</p> <p>cyclooxygenase</p> <p>cyclooxygenase-1</p> <p>cyclooxygenase-2</p> <p>dipole moment</p> <p>diphenyl-1-picryl hydrazine</p> <p>electron affinities</p> <p>epidermal growth factor receptor</p> <p>Highest occupied molecular orbital energy</p> <p>Lowest unoccupied molecular orbital energy</p> <p>eicosapentaenoic acid</p> <p>FRee Online druG conformation generation</p> <p>Genetic Algorithm</p> <p>GROningen MAchine for Chemical Simulations</p> <p>Highest occupied molecular orbital</p> <p>Ionization potential</p> <p>Lowest unoccupied molecular orbital</p> <p>Molecular dynamics</p> <p>Molecular orbital</p> <p>Nanoscale Molecular Dynamics</p> <p>Non-Steroidal Anti Inflammatory Drugs</p> <p>nanoseconds</p> <p>Ensemble-constant-energy, constant-volume, Constant particle ensemble</p> <p>Protein Data Bank Identifier</p> <p>Particle Mesh Ewald</p> <p>Python Prescription</p> <p>Root-Mean-Square Deviation</p> <p>Root-Mean-Square Fluctuation</p> <p>reactive lipid species</p> <p>Reactive Oxygen Species</p> <p>solvent accessible surface area</p> <p>simplified molecular-input line-entry system</p> <p>superoxide anion radical</p> <p>Universal force field</p> <p>vascular endothelial growth factor</p> <p>vascular endothelial growth factor receptor</p> <p>Visual molecular dynamics</p> <p>Communicated by Ramaswamy H. …”
  5. 5

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”