بدائل البحث:
algorithm sphere » algorithm where (توسيع البحث), algorithm pre (توسيع البحث), algorithm shows (توسيع البحث)
sphere function » severe functional (توسيع البحث), reserve function (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
algorithm sphere » algorithm where (توسيع البحث), algorithm pre (توسيع البحث), algorithm shows (توسيع البحث)
sphere function » severe functional (توسيع البحث), reserve function (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
-
1
-
2
-
3
Results of searching performance of different algorithm models on the Sphere function and Griewank function.
منشور في 2021"…<p>Results of searching performance of different algorithm models on the Sphere function and Griewank function.…"
-
4
-
5
-
6
-
7
-
8
Multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
9
-
10
-
11
-
12
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
13
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
14
-
15
-
16
-
17
-
18
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
19
Fixed-dimensional multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
20
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"