Showing 121 - 140 results of 12,734 for search '(((( algorithm step function ) OR ( algorithm i function ))) OR ( algorithm python function ))', query time: 0.98s Refine Results
  1. 121
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126

    Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic by NELSON L. DIAS (8078003)

    Published 2019
    “…With these practical rules, simple summation algorithms provide sufficiently robust results for the calculation of the density function and its definite integrals. …”
  7. 127
  8. 128

    Steps for obtaining a complete Pareto frontier. by Tao Dong (15551)

    Published 2025
    “…The results revealed that the improved multi-objective differential evolution algorithm in Zitzler-Deb-Thiele 1 function test had generational distance of 0.0513, inverted generational distance of 0.3265, and hyper volume metric of 0.1301. …”
  9. 129
  10. 130
  11. 131

    Table 12_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  12. 132

    Table 10_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  13. 133

    Table 15_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  14. 134

    Table 8_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  15. 135

    Table 6_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  16. 136

    Table 13_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  17. 137

    Table 9_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  18. 138

    Table 2_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  19. 139

    Table 14_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”
  20. 140

    Table 5_Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle.xlsx by Adebisi R. Ogunbawo (21216281)

    Published 2025
    “…</p>Methods<p>A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute the GAPY−1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). …”