بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm steps » algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
steps function » step function (توسيع البحث), its function (توسيع البحث), cep function (توسيع البحث)
algorithm cell » algorithm cl (توسيع البحث), algorithm could (توسيع البحث), algorithms real (توسيع البحث)
cell function » renal function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm steps » algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
steps function » step function (توسيع البحث), its function (توسيع البحث), cep function (توسيع البحث)
algorithm cell » algorithm cl (توسيع البحث), algorithm could (توسيع البحث), algorithms real (توسيع البحث)
cell function » renal function (توسيع البحث)
-
1
GameOfLife Prediction Dataset
منشور في 2025"…Conway's Game of Life follows a strict set off rules at each "generation" (simulation step) where cells alternate between a dead and alive state based on number of surrounding alive cells. …"
-
2
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
منشور في 2025"…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…"